Inducible-caspase-9 transduced T cells (BPX-501) after haplo-HSCT in children

Franco Locatelli, MD, PhD
Università di Pavia
IRCCS Ospedale Pediatrico Bambino Gesù Roma, Italy
franco.locatelli@opbg.net

Valencia, April 5, 2016
Inducible-caspase-9 transduced T cells after haplo-HSCT in children

Haploidentical Donors: Evolution of T-cell Depletion Strategy

1995

1. CD34+ Selection “pure stem cells”

2010

2. TCRαβ/CD19 Depletion stem cells + effectors (NK cells + γδ-T cells)
Inducible-caspase-9 transduced T cells after haplo-HSCT in children

Generation of alloreactive NK cells and their therapeutic role in haplo-HSCT

A Novel Strategy for HSC Transplantation from Haploidentical Donors: Depletion of α/β T Cells

Inducible-caspase-9 transduced T cells after haplo-HSCT in children

Locatelli F et al, Front Immunol 2013
Inducible-caspase-9 transduced T cells after haplo-HSCT in children

Historical Cumulative Incidence of TRM
(patients transplanted from Nov 2010 – Sept 2014)

- Sibling
- MUD
- Haplo

p=0.15

N=51, E=6, TRM 11.8% (95% CI 4.7-22.3)
N=80, E=4, TRM 5% (95% CI 1.6-11.4)
N=41, E=1, TRM 2.4% (95% CI 0.2-11.2)

Number at risk
- 41 31 19 8 1
- 51 35 24 13 5
- 80 56 34 20 7

Years
0 1 2 3 4
Inducible-caspase-9 transduced T cells after haplo-HSCT in children

Historical Cumulative Incidence of Relapse (patients transplanted from Nov 2010 – Sept 2014)

Cumulative incidence

Years

Number at risk

<table>
<thead>
<tr>
<th>Years</th>
<th>Sibling</th>
<th>MUD</th>
<th>Haplo</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>31</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>51</td>
<td>35</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>80</td>
<td>56</td>
<td>34</td>
<td>20</td>
</tr>
</tbody>
</table>

p=0.72

N=41, E=11, RI 32.2% (95% CI 16.6-48.9)

N=51, E=10, RI 22.2% (95% CI 11.1-35.7)

N=80, E=17, RI 21.9% (95% CI 13.4-31.8)
Inducible-caspase-9 transduced T cells after haplo-HSCT in children
Inducible-caspase-9 transduced T cells after haplo-HSCT in children

Historical Viral Reactivations / Infections (patients transplanted from Nov 2010 – Sept 2014)

- N=51, E=37, CI 72.5% (SE 16.5)
- N=80, E=47, CI 59.5% (SE 8.1)
- N=41, E=20, CI 48.7% (SE 7.4)

Cumulative incidence

Months

Number at risk

<table>
<thead>
<tr>
<th>Months</th>
<th>Sibling</th>
<th>MUD</th>
<th>Haplo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41</td>
<td>51</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>13</td>
<td>32</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>30</td>
<td>12</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>40</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

p=0.005
Inducible-caspase-9 transduced T cells after haplo-HSCT in children
CD34+ cells → HPCs → Thymus → Recent thymic emigrants/naïve T cells

- GvHD
- TBI
- Sex steroid hormones
- Corticosteroids
- Aging
- KGF
- IL-7, IL-22
- LHRH-analogues
- Type-3 ILC

DLIs
Infusion of non-alloreactive T cells
T cells transduced with suicide genes
Pathogen-specific T cells
Treg/Tcon infusion

BPX–501: Inducible Caspase 9 T cells

“iC9 “Suicide Gene”

“Inducible” Binding site for Rimiducid – starts caspase apoptosis cascade

Truncated CD19 marker allows selection for purity and tracking in blood

- From normal donor leukapheresis -- GMP facilities US / Europe
- Activated and expanded in culture, transduced with the iC9 suicide gene and selected for CD19+ cells
- Cryopreserved and stored in liquid nitrogen
- Maintain characteristics of normal T cells
 - Broad T cell repertoire
 - Antiviral and antigen specific activity
BP-004 Study
Phase I/II Study of BPX-501 T Cells from an HLA-partially Matched Family Donor After Negative Selection of TCR αβ+ T Cells in Pediatric Patients With Hematological (malignant and non-malignant) Disorders

ClinicalTrials.gov identifier: NCT02065869
EUDRACT number: 2014-000584-41

Sponsor: Bellicum Pharmaceuticals
(first patient treated Dec 2014)

Participating Centers in Europe:
Ospedale Pediatrico Bambino Gesù
Great Ormond Street Hospital
Great North Children's Hospital Research Unit
University of Freiburg Clinic

Participating Centers in US:
Baylor College of Medicine Center for Cell and Gene Therapy, Feigin Center
Children's Hospital Los Angeles; Children's Healthcare of Atlanta at Egleston
Boston Children's Dana Farber; Children's National Medical Center
Seattle Children’s Hospital/UW/FHRCC; Children's Hospital – OHSU
Children’s Hospital UT SW; The Children's Hospital at Montefiore
Inducible-caspase-9 transduced T cells after haplo-HSCT in children
BP-004 Study design

Phase I portion:

Classical 3+3 design

2.5 X 10^5, 5 X 10^5 and 1 X 10^6 BPX-501 T Cells/kg

Phase II portion:

MTD/RD

1 X 10^6 BPX-501 T Cells/kg

- Haploidentical donor (usually a parent)
- Non-mobilized apheresis for BPX-501 product
- TCRαβ/CD19-Depleted Allograft
- BPX-501 T cells Infused Day 14 + 4 post Tx
- No Post-Transplant GVHD Prophylaxis
- Rimiducid (AP1903) Used for Uncontrollable GVHD
Characterization of BPX-501: T Cell Phenotype Compared to Apheresis

After expansion and transduction, BPX-501 T cells have increased effector phenotype in both CD4 and CD8 T cell populations.
Characterization of BPX-501: Viability pre and post-thaw

- 49 infused BPX-501 T cell products (both malignant and non-malignant patients)
- High viability post cryopreservation and thaw
Treatment of GVHD with Rimiducid in US BP-004 Patient

- 15 month old non-malignant patient received 5×10^5 BPX-501 T cells/kg
- Progressive skin acute GVHD after topical steroids – patient received rimiducid
Variables considered in the choice of the haplo donor:

- NK alloreactivity according to the KIR/KIR ligand model
- KIR genotype B/x better than A/A
- Higher B content score (in particular CenB)
- Presence of licensed KIR2DS1 when C2⁺ patient
- Donor/recipient HCMV serology
- Larger size of alloreactive subset
- Donor age
- Donor gender (mother better than father)
Stem cell graft characterization

Nucleated Cells
1.15x10^9/Kg (range 0.6-1.9)

IDEAL GRAFT COMPOSITION

- High CD34+
- High γδ
- High NK
- Low αβ
- Low CD20+

CD34+
- 20.0x10^6/Kg (range 12.1-28.2)

γδ
- 15.2x10^6/Kg (range 3.88-38.9)

NK
- 33.5x10^6/Kg (range 23.9-97.5)

αβ
- 3.6x10^4/Kg (range 0.4-9.4)

CD20+
- 2.5x10^4/Kg (range 0.3-20)
<table>
<thead>
<tr>
<th>Patients characteristics (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
</tr>
<tr>
<td>Gender:</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>Median age at diagnosis (years):</td>
</tr>
<tr>
<td>Median age at HCST (years):</td>
</tr>
<tr>
<td>Median Follow-up (months):</td>
</tr>
</tbody>
</table>
Patients characteristics (2)

<table>
<thead>
<tr>
<th>Number of patients</th>
<th>17 (100%)</th>
</tr>
</thead>
</table>

Disease:

<table>
<thead>
<tr>
<th>ALL</th>
<th>13 (76%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph+</td>
<td>1 (6%)</td>
</tr>
<tr>
<td>t(4;11)</td>
<td>1 (6%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AML</th>
<th>4 (24%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0/M7</td>
<td>2 (12%)</td>
</tr>
<tr>
<td>7-/complex caryotype</td>
<td>1 (6%)</td>
</tr>
<tr>
<td>secondary AML</td>
<td>1 (6%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CR at HSCT</th>
<th>17 (100%)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CR1/CR2</th>
<th>7/10 (41/59%)</th>
</tr>
</thead>
</table>
Donor characteristics (1)

<table>
<thead>
<tr>
<th>Donors</th>
<th>17 (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (years):</td>
<td>35 (26 – 48)</td>
</tr>
</tbody>
</table>

Donor:

<table>
<thead>
<tr>
<th>Mother</th>
<th>9 (53%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Father</td>
<td>8 (47%)</td>
</tr>
</tbody>
</table>

Sex mismatch

<table>
<thead>
<tr>
<th>Female->Male</th>
<th>6 (35%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female->Male</td>
<td>4 (24%)</td>
</tr>
<tr>
<td>Donors</td>
<td>17 (100%)</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>NK alloreactivity</td>
<td></td>
</tr>
<tr>
<td>YES</td>
<td>11 (65%)</td>
</tr>
<tr>
<td>NO</td>
<td>6 (35%)</td>
</tr>
<tr>
<td>Genotype</td>
<td></td>
</tr>
<tr>
<td>A/A</td>
<td>2 (12%)</td>
</tr>
<tr>
<td>B/X</td>
<td>15 (88%)</td>
</tr>
</tbody>
</table>
Inducible-caspase-9 transduced T cells after haplo-HSCT in children

Cumulative incidence of ANC and PLT recovery for the malignant cohort

Median 11 days (range 9-13)

Median 17 days (range 10-22)
Acute & chronic GvHD in Malignant Cohort

<table>
<thead>
<tr>
<th></th>
<th>Number of Patients</th>
<th>Treatment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute GVHD I-II Skin Only</td>
<td>3</td>
<td>topical steroids</td>
<td>resolved</td>
</tr>
<tr>
<td>Acute GVHD III Visceral</td>
<td>2</td>
<td>Systemic steroids</td>
<td>resolved</td>
</tr>
<tr>
<td>Acute GVHD IV Visceral</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Mild Chronic GVHD</td>
<td>2</td>
<td>Systemic steroids</td>
<td>resolved</td>
</tr>
<tr>
<td>Severe Chronic GVHD</td>
<td>1</td>
<td>Systemic steroids Rimiducid infusion</td>
<td>improved (bil. decreased)</td>
</tr>
</tbody>
</table>
Inducible-caspase-9 transduced T cells after haplo-HSCT in children
Probability of DFS for the whole cohort of patients

1-yr DFS 92.9% (SE 6.8)

Median follow.up: 7 months
Inducible-caspase-9 transduced T cells after haplo-HSCT in children
Inducible-caspase-9 transduced T cells after haplo-HSCT in children
Impact of CMV reactivation on BPX-501 expansion on BP-004 patients

Inducible-caspase-9 transduced T cells after haplo-HSCT in children
Expansion of iC9-transduced T Cells in BP-004 Patient

CD3+/CD19+ and CMV reactivation

![Graph showing CD3+/CD19+ and CMV reactivation over days post HSCT]

- CD3+/CD19+ (\(\mu l\))
- CMV DNA (copies/ml)

![Bar graph showing IFN-\(\gamma\) SFC/10^5 PBMC response to various stimuli]

- Media
- PHA
- EBV
- pp65
- IE1
- IE2

CMV proteins
BPX-501 T cells in Bone Marrow

CD3+CD19+ in Bone Marrow

Time from HSCT (days)

cells/ml

0 100 200 300 400

0 200 400 600
<table>
<thead>
<tr>
<th></th>
<th>CU#1</th>
<th>CU#2</th>
<th>CU#3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Age</td>
<td>14 years</td>
<td>18 months</td>
<td>5 years</td>
</tr>
<tr>
<td>Disease</td>
<td>Refractory AML</td>
<td>Refractory AML</td>
<td>1° relapse refractory AML</td>
</tr>
<tr>
<td>Type of donor</td>
<td>father</td>
<td>mother</td>
<td>mother</td>
</tr>
<tr>
<td>Conditioning regimen</td>
<td>TBI+TT+L-PAM (after CLOVE)</td>
<td>BU+Cy+L-PAM (after CLOVE)</td>
<td>Treo+TT+L-PAM (after CLO-ARAc)</td>
</tr>
<tr>
<td>Engraftment</td>
<td>Yes (day +18)</td>
<td>Yes (day +11)</td>
<td>Yes (day +13)</td>
</tr>
<tr>
<td>Acute and chronic GvHD</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Relapse</td>
<td>No</td>
<td>Yes (4 mos)</td>
<td>No</td>
</tr>
<tr>
<td>Last follow-up</td>
<td>Alive & well (+ 13 mos)</td>
<td>Dead due to disease recurrence</td>
<td>Alive & well (+ 4 mos)</td>
</tr>
</tbody>
</table>
1. BPX-501 cells once infused expand *in vivo* and persist over time, contributing to recovery of adaptive immunity

2. No patient has died of infections, GvHD or other transplant-related complications

3. Although the follow-up is still limited, the relapse rate in these children with acute leukemias given BPX-501 cells compares favorably with that of the historical controls

4. No patient developed PTLD

5. This approach renders haplo-HSCT an attractive option for children with acute leukemia in need of an allograft

6. Future studies will address the role of repeated infusions or higher numbers of BPX-501 cells in patients with fully resistant disease
Department of Hemato-Oncology, IRCCS Bambino Gesù Childrens Hospital, Rome

BMT Unit
Alice Bertaina
Letizia Brescia
Francesca Di Florio
Barbarella Lucarelli
Pietro Merli
Giuseppe Palumbo
Rita Pinto

Graft Manipulation
Stefano Ceccarelli
Gian Pietro Conflitti
Giovanna Leone
Giusy Li Pira
David Malaspina

Clinical Trial Data Managers
Valentina Cirillo
Maria Pia Cefalo

Hemato-oncology
Mattia Algeri
Carlo Baronci
Antonella Cacchione
Roberta Caruso
Aurora Castellano
Valentina Coletti
Raffaele Cozza
Debora De Pasquale
Angela Di Giannatale
Luigi De Sio
Stefania Gaspari
Katia Girardi
Alessandra Lombardi
Matteo Luciani
Angela Mastronuzzi
Giuseppe Milano
M. Teresa Romano
Ida Russo
Luisa Strocchio
Luciana Vinti

Laboratory of Immunotherapy
Concetta Quintarelli
Daria Pagliara
Ignazio Caruana
Biagio De Angelis
Domenico Orlando
Lorenzo Moretta

Bellicum Pharmaceuticals
Annemarie Moseley
Martha French
Alan Smith
Ken Moseley

University of Genoa, IST
Alessandro Moretta
Cristina Bottino
Michela Falco
Cristina Mingari
Daniela Pende
Mariella Dalla Chiesa
Irma Airoldi